

SOLUTION

stresses
$+\backslash F=0: \quad \sigma A-90 A \sin 30^{\circ} \cos 30^{\circ}-90 A \cos 30^{\circ} \sin 30^{\circ}+60 A \cos 30^{\circ} \cos 30^{\circ}=0$

$$
\sigma=180 \sin 30^{\circ} \cos 30^{\circ}-60 \cos ^{2} 30^{\circ}
$$

$$
\sigma=32.9 \mathrm{MPa}
$$

$+/ \Sigma F=0: \tau A+90 A \sin 30^{\circ} \sin 30^{\circ}-90 A \cos 30^{\circ} \cos 30^{\circ}-60 A \cos 30^{\circ} \sin 30^{\circ}=0$
$\tau=90\left(\cos ^{2} 30^{\circ}-\sin ^{2} 30^{\circ}\right)+60 \cos 30^{\circ} \sin 30^{\circ}$

$$
\tau=71.0 \mathrm{MPa}
$$

SOLUTION

$$
\sigma_{x}=28 \mathrm{MPa} \quad \sigma_{y}=140 \mathrm{MPa} \quad \tau_{x y}=-42 \mathrm{MPa}
$$

(a) $\tan 2 \theta_{p}=\frac{2 \tau_{x y}}{\sigma_{x}-\sigma_{y}}=\frac{(2)(-42)}{28-140}=0.750$

$$
2 \theta_{p}=36.87^{\circ}
$$

$$
\theta_{p}=18.43^{\circ}, 108.43^{\circ}
$$

(b) $\sigma_{\max , \min }=\frac{\sigma_{x}+\sigma_{y}}{2} \pm \sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}$

$$
\begin{aligned}
& =\frac{28+140}{2} \pm \sqrt{\left(\frac{28-140}{2}\right)^{2}+(-42)^{2}} \\
& =84 \pm 70
\end{aligned}
$$

$$
\begin{gathered}
\sigma_{\max }=154 \mathrm{MPa} \\
\sigma_{\min }=14 \mathrm{MPa}
\end{gathered}
$$

SOLUTION

$$
\sigma_{x}=63 \mathrm{MPa} \quad \sigma_{y}=-42 \mathrm{MPa} \quad \tau_{x y}=28 \mathrm{MPa}
$$

(a) $\tan 2 \theta_{s}=-\frac{\sigma_{x}-\sigma_{y}}{2 \tau_{x y}}=-\frac{63+42}{(2)(28)}=-1.875$

$$
2 \theta_{s}=-61.93^{\circ}
$$

$$
\theta_{s}=-30.96^{\circ}, 59.04^{\circ}
$$

(b) $\tau_{\max }=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}$

$$
=\sqrt{\left(\frac{63+42}{2}\right)^{2}+(28)^{2}}=59.5 \mathrm{MPa}
$$

(c) $\sigma^{\prime}=\sigma_{\mathrm{ave}}=\frac{\sigma_{x}+\sigma_{y}}{2}=\frac{63-42}{2}=10.5 \mathrm{MPa}$

SOLUTION

For plane $a-a, \quad \theta=65^{\circ}$.

$$
\begin{aligned}
& \sigma_{x}=0, \quad \tau_{x y}=0, \quad \sigma_{y}=\frac{P}{A} \\
& \sigma=\sigma_{x} \cos ^{2} \theta+\sigma_{y} \sin ^{2} \theta+2 \tau_{x y} \sin \theta \cos \theta=0+\frac{P}{A} \sin ^{2} 65^{\circ}+0 \\
& P=\frac{A \sigma}{\sin ^{2} 65^{\circ}}=\frac{\left(50 \times 10^{-3}\right)\left(80 \times 10^{-3}\right)\left(800 \times 10^{3}\right)}{\sin ^{2} 65^{\circ}}=3.90 \times 10^{3} \mathrm{~N} \\
& \tau=-\left(\sigma_{x}-\sigma_{y}\right) \sin \theta \cos \theta+\tau_{x y}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=\frac{P}{A} \sin 65^{\circ} \cos 65^{\circ}+0 \\
& P=\frac{A \tau}{\sin 65^{\circ} \cos 65^{\circ}}=\frac{\left(50 \times 10^{-3}\right)\left(80 \times 10^{-3}\right)\left(600 \times 10^{3}\right)}{\sin 65^{\circ} \cos 65^{\circ}}=6.27 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Allowable value of P is the smaller one.

$$
P=3.90 \mathrm{kN}
$$

PROBLEM 7.25

A mechanic uses a crowfoot wrench to loosen a bolt at E. Knowing that the mechanic applies a vertical 100 N force at A, determine the principal stresses and the maximum shearing stress at point H located as shown on top of the 18 mm diameter shaft.

SOLUTION

Equivalent force-couple system at center of shaft in section at point H.

$$
\begin{aligned}
& V=100 \mathrm{~N} \quad M=(100)(150)=15000 \mathrm{~N} \cdot \mathrm{~mm} \\
& T=(100)(250)=25000 \mathrm{~N} \cdot \mathrm{~mm}
\end{aligned}
$$

Shaft cross section: $\quad d=18 \mathrm{~mm}, \quad c=\frac{1}{2} d=9 \mathrm{~mm}$

$$
J=\frac{\pi}{2} c^{4}=10306 \mathrm{~mm}^{4} \quad I=\frac{1}{2} J=5153 \mathrm{~mm}^{4}
$$

Torsion:

$$
\tau=\frac{T c}{J}=\frac{(25000)(9)}{10306}=21.8 \mathrm{~N} / \mathrm{mm}^{2}=21.8 \mathrm{MPa}
$$

Bending: $\quad \sigma=\frac{M c}{I}=\frac{(15000)(9)}{5153}=26.2 \mathrm{~N} / \mathrm{mm}^{2}=26.2 \mathrm{MPa}$
Transverse shear: At point H stress due to transverse shear is zero.
Resultant stresses: $\quad \sigma_{x}=26.2 \mathrm{MPa}, \quad \sigma_{y}=0, \quad \tau_{x y}=21.8 \mathrm{MPa}$

$$
\begin{aligned}
\sigma_{\mathrm{ave}} & =\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)=13.1 \mathrm{MPa} \\
R & =\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=\sqrt{13.1^{2}+21.8^{2}}=25.4 \mathrm{MPa} \\
\sigma_{a} & =\sigma_{\mathrm{ave}}+R=38.5 \mathrm{MPa} \\
\sigma_{b} & =\sigma_{\mathrm{ave}}-R=-12.3 \mathrm{MPa} \\
\tau_{\max } & =R=25.4 \mathrm{MPa}
\end{aligned}
$$

SOLUTION

$$
\begin{aligned}
r_{o} & =\frac{d_{o}}{2}=\frac{102}{2}=51 \mathrm{~mm} \quad r_{i}=r_{o}-t=45 \mathrm{~mm} \\
J & =\frac{\pi}{2}\left(r_{o}^{4}-r_{i}^{4}\right)=4.1855 \times 10^{6} \mathrm{~mm}^{4} \\
& =4.1855 \times 10^{-6} \mathrm{~m}^{4} \\
I & =\frac{1}{2} J=2.0927 \times 10^{-6} \mathrm{~m}^{4}
\end{aligned}
$$

Force-couple system at center of tube in the plane containing points H and K :

$$
\begin{aligned}
F_{x} & =10 \mathrm{kN} \\
& =10 \times 10^{3} \mathrm{~N} \\
M_{y} & =\left(10 \times 10^{3}\right)\left(200 \times 10^{-3}\right) \\
& =2000 \mathrm{~N} \cdot \mathrm{~m} \\
M_{z} & =-\left(10 \times 10^{3}\right)\left(150 \times 10^{-3}\right) \\
& =-1500 \mathrm{~N} \cdot \mathrm{~m}
\end{aligned}
$$

Torsion: At point K, place local x-axis in negative global z-direction.

$$
\begin{aligned}
T & =M_{y}=2000 \mathrm{~N} \cdot \mathrm{~m} \\
c & =r_{o}=51 \times 10^{-3} \mathrm{~m} \\
\tau_{x y} & =\frac{T c}{J}=\frac{(2000)\left(51 \times 10^{-3}\right)}{4.1855 \times 10^{6}} \\
& =24.37 \times 10^{6} \mathrm{~Pa} \\
& =24.37 \mathrm{MPa}
\end{aligned}
$$

PROBLEM 7.26 (Continued)

Transverse shear: Stress due to transverse shear $V=F_{x}$ is zero at point K.
Bending:

$$
\left|\sigma_{y}\right|=\frac{\left|M_{z}\right| c}{I}=\frac{(1500)\left(51 \times 10^{-3}\right)}{2.0927 \times 10^{-6}}=36.56 \times 10^{6} \mathrm{~Pa}=36.56 \mathrm{MPa}
$$

Point K lies on compression side of neutral axis.

$$
\sigma_{y}=-36.56 \mathrm{MPa}
$$

Total stresses at point K :

$$
\begin{aligned}
\sigma_{x} & =0, \quad \sigma_{y}=-36.56 \mathrm{MPa}, \quad \tau_{x y}=24.37 \mathrm{MPa} \\
\sigma_{\mathrm{ave}} & =\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)=-18.28 \mathrm{MPa} \\
R & =\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=30.46 \mathrm{MPa} \\
\sigma_{\max } & =\sigma_{\mathrm{ave}}+R=-18.28+30.46 \\
\sigma_{\min } & =\sigma_{\mathrm{ave}}-R=-18.28-30.46 \\
\tau_{\max } & =R
\end{aligned}
$$

$$
\begin{gathered}
\sigma_{\max }=12.18 \mathrm{MPa} \\
\sigma_{\min }=-48.7 \mathrm{MPa} \\
\tau_{\max }=30.5 \mathrm{MPa}
\end{gathered}
$$

PROBLEM 7.36

Solve Prob. 7.14, using Mohr's circle.
PROBLEM 7.13 through 7.16 For the given state of stress, determine the normal and shearing stresses after the element shown has been rotated through (a) 25° clockwise, (b) 10° counterclockwise.

SOLUTION

$$
\begin{aligned}
\sigma_{x} & =-60 \mathrm{MPa}, \\
\sigma_{y} & =90 \mathrm{MPa}, \\
\tau_{x y} & =30 \mathrm{MPa} \\
\sigma_{\mathrm{ave}} & =\frac{\sigma_{x}+\sigma_{y}}{2}=15 \mathrm{MPa}
\end{aligned}
$$

Plotted points for Mohr's circle:

$$
\begin{aligned}
X & :(-60 \mathrm{MPa},-30 \mathrm{MPa}) \\
Y & :(90 \mathrm{MPa}, 30 \mathrm{MPa}) \\
C & :(15 \mathrm{MPa}, 0) \\
\tan 2 \theta_{p} & =\frac{F X}{F C}=\frac{30}{75}=0.4 \\
2 \theta_{p} & \left.=21.80^{\circ} \quad \theta_{P}=10.90^{\circ}\right) \\
R & =\sqrt{F C}^{2}+\overline{F X}^{2}=\sqrt{75^{2}+30^{2}}=80.78 \mathrm{MPa}
\end{aligned}
$$

(a) $\quad \theta=25^{\circ}$). $2 \theta=50^{\circ} \supset$

$$
\begin{aligned}
\varphi & =2 \theta-2 \theta_{P}=50^{\circ}-21.80^{\circ}=28.20^{\circ} \\
\sigma_{x^{\prime}} & =\sigma_{\mathrm{ave}}-R \cos \varphi \\
\tau_{x^{\prime} y^{\prime}} & =-R \sin \varphi \\
\sigma_{y^{\prime}} & =\sigma_{\mathrm{ave}}+R \cos \varphi
\end{aligned}
$$

$$
\begin{gathered}
\sigma_{x^{\prime}}=-56.2 \mathrm{MPa} \\
\tau_{x^{\prime} y^{\prime}}=-38.2 \mathrm{MPa} \\
\sigma_{y^{\prime}}=86.2 \mathrm{MPa}
\end{gathered}
$$

(b) $\quad \theta=10^{\circ} 3 . \quad 2 \theta=20^{\circ}{ }^{\top}$

$$
\begin{aligned}
\varphi & =2 \theta_{p}+2 \theta=21.80^{\circ}+20^{\circ}=41.80^{\circ} \supset \\
\sigma_{x^{\prime}} & =\sigma_{\mathrm{ave}}-R \cos \varphi \\
\tau_{x^{\prime} y^{\prime}} & =R \sin \varphi \\
\sigma_{y^{\prime}} & =\sigma_{\mathrm{ave}}+R \cos \varphi
\end{aligned}
$$

$$
\sigma_{x^{\prime}}=\sigma_{\mathrm{ave}}-R \cos \varphi \quad \sigma_{x^{\prime}}=-45.2 \mathrm{MPa}
$$

$$
\tau_{x^{\prime} y^{\prime}}=53.8 \mathrm{MPa}
$$

$$
\sigma_{y^{\prime}}=75.2 \mathrm{MPa}
$$

SOLUTION

$$
\begin{aligned}
\sigma_{x} & =0 \\
\tau_{x y} & =0 \\
\sigma_{y} & =P / A \\
A & =\left(50 \times 10^{-3}\right)\left(80 \times 10^{-3}\right) \\
& =4 \times 10^{-3} \mathrm{~m}^{2} \\
\sigma & =\frac{P}{2 A}\left(1+\cos 50^{\circ}\right) \\
P & =\frac{2 A \sigma}{1+\cos 50^{\circ}} \\
P & \leq \frac{(2)\left(4 \times 10^{-3}\right)\left(800 \times 10^{3}\right)}{1+\cos 50^{\circ}} \\
P & \leq 3.90 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

$$
\tau=\frac{P}{2 A} \sin 50^{\circ} \quad P=\frac{2 A \tau}{\sin 50^{\circ}} \leq \frac{(2)\left(4 \times 10^{-3}\right)\left(600 \times 10^{3}\right)}{\sin 50^{\circ}}=6.27 \times 10^{3} \mathrm{~N}
$$

Choosing the smaller value,

$$
P=3.90 \mathrm{kN}
$$

PROBLEM 7.55

Determine the principal planes and the principal stresses for the state of plane stress resulting from the superposition of the two states of stress shown.

SOLUTION

Consider the state of stress on the left. We shall express it in terms of horizontal and vertical components.

Principal axes and principal stress:

$$
\begin{aligned}
& \frac{\sigma_{x}}{2}-\sigma_{y} \\
&= \frac{1}{2}(118.3-56.7)=30.8 \\
& R=\sqrt{(30.8)^{2}+(75)^{2}}=81.08 \\
& \sigma_{\text {ave }} \frac{1}{2}(118.3+56.7)=+87.5 \\
& \tan 2 \theta_{p}=\frac{75}{30.8} \quad 2 \theta_{p}=67.67^{\circ} \\
& \sigma_{\max }=\sigma_{\mathrm{ave}}+R=87.5+81.08 \\
& \sigma_{\min }=\sigma_{\mathrm{ave}}-R=87.5-81.08
\end{aligned}
$$

$$
\begin{array}{r}
\left.\left.\theta_{p}=33.8^{\circ}\right), \text { and } 123.8^{\circ}\right) \\
\sigma_{\max }=+168.6 \mathrm{MPa} \\
\sigma_{\min }=+6.42 \mathrm{MPa}
\end{array}
$$

SOLUTION

(a) $\quad \sigma_{x}=140 \mathrm{MPa}, \quad \sigma_{y}=40 \mathrm{MPa}, \quad \tau_{x y}=80 \mathrm{MPa}$

$$
\begin{aligned}
\sigma_{\mathrm{ave}} & =\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)=90 \mathrm{MPa} \\
R & =\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=\sqrt{50^{2}+80^{2}}=94.34 \mathrm{MPa} \\
\sigma_{a} & =\sigma_{\mathrm{ave}}+R=184.34 \mathrm{MPa} \quad(\max) \\
\sigma_{b} & =\sigma_{\mathrm{ave}}-R=-4.34 \mathrm{MPa} \quad(\min) \\
\sigma_{c} & =0
\end{aligned}
$$

$\tau_{\max (\text { in-plane })}=\frac{1}{2}\left(\sigma_{a}-\sigma_{b}\right)=R=94.34 \mathrm{MPa}$

$$
\tau_{\max }=\frac{1}{2}\left(\sigma_{\max }-\sigma_{\min }\right)=\frac{1}{2}\left(\sigma_{a}-\sigma_{b}\right)=94.3 \mathrm{MPa}
$$

$$
\begin{align*}
& \sigma_{x}=140 \mathrm{MPa}, \quad \sigma_{y}=120 \mathrm{MPa}, \quad \tau_{x y}=80 \mathrm{MPa} \tag{b}\\
& \sigma_{\mathrm{ave}}=\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)=130 \mathrm{MPa} \\
& R=\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{x y}^{2}}=\sqrt{10^{2}+80^{2}}=80.62 \mathrm{MPa} \\
& \sigma_{a}=\sigma_{\mathrm{ave}}+R=210.62 \mathrm{MPa} \quad(\max) \\
& \sigma_{b}=\sigma_{\mathrm{ave}}-R=49.38 \mathrm{MPa} \\
& \sigma_{c}=0 \quad(\min) \\
& \sigma_{\max }=\sigma_{a}=210.62 \mathrm{MPa} \quad \sigma_{\min }=\sigma_{c}=0 \\
& \tau_{\max (\mathrm{in}-\mathrm{plane})}=R=86.62 \mathrm{MPa} \\
& \tau_{\max }=\frac{1}{2}\left(\sigma_{\max }-\sigma_{\min }\right)=105.3 \mathrm{MPa}
\end{align*}
$$

$$
\tau_{\max }=105.3 \mathrm{MPa}
$$

SOLUTION

SOLUTION

$$
\begin{aligned}
\sigma_{x} & =105 \mathrm{MPa} \quad \sigma_{y}=42 \mathrm{MPa} \\
\sigma_{\mathrm{ave}} & =\frac{1}{2}\left(\sigma_{x}+\sigma_{y}\right)=73.5 \mathrm{MPa} \\
U & =\frac{\sigma_{x}-\sigma_{y}}{2}=31.5 \mathrm{MPa} \\
\tau & (\mathrm{MPa})
\end{aligned}
$$

(a) For $\tau_{\text {max }}=63 \mathrm{MPa}$

Center of Mohr's circle lies at point C.
Lines marked (a) show the limits on $\tau_{\text {max }}$.
Limit on $\sigma_{\text {max }}$ is $\sigma_{\text {max }}=2 \tau_{\text {max }}=126 \mathrm{MPa}$.
For the Mohr's circle $\sigma_{a}=\sigma_{\text {max }}$ corresponds to point A_{a}.

$$
\begin{aligned}
R & =\sigma_{a}-\sigma_{\text {ave }} \\
& =126-73.5 \\
& =52.5 \mathrm{MPa} \\
R & =\sqrt{U^{2}+\tau_{x y}^{2}} \\
\tau_{x y} & = \pm \sqrt{R^{2}-U^{2}} \\
& = \pm \sqrt{52.5^{2}-31.5^{2}} \\
& = \pm 42 \mathrm{MPa}
\end{aligned}
$$

(b) For $\tau_{\text {max }}=84 \mathrm{MPa}$

Center of Mohr's circle lies at point C.

$$
\begin{aligned}
R & =84 \mathrm{MPa} \\
\tau_{x y} & = \pm \sqrt{R^{2}-U^{2}}= \pm 78.7 \mathrm{MPa} \\
\sigma_{a} & =73.5+84=157.5 \mathrm{MPa} \\
\sigma_{b} & =73.5-84=-10.5 \mathrm{MPa} \\
\sigma_{c} & =0 \\
\tau_{\max } & =\frac{1}{2}\left(\sigma_{\max }-\sigma_{\min }\right)=84 \mathrm{MPa} \quad \text { O.K. }
\end{aligned}
$$

Checking

SOLUTION

$$
\sigma_{x}=90 \mathrm{MPa}, \quad \sigma_{z}=0, \quad \tau_{x z}=60 \mathrm{MPa}
$$

Mohr's circle of stresses in $z x$ plane:

$$
\begin{aligned}
\sigma_{\mathrm{ave}} & =\frac{1}{2}\left(\sigma_{x}+\sigma_{z}\right)=45 \mathrm{MPa} \\
R & =\sqrt{\left(\frac{\sigma_{x}-\sigma_{y}}{2}\right)^{2}+\tau_{z x}^{2}}=\sqrt{45^{2}+60^{2}}=75 \mathrm{MPa}
\end{aligned}
$$

$$
\sigma_{a}=\sigma_{\mathrm{ave}}+R=120 \mathrm{MPa}, \quad \sigma_{b}=\sigma_{\mathrm{ave}}-R=-30 \mathrm{MPa}
$$

Assume

$$
\begin{aligned}
\sigma_{\max } & =\sigma_{a}=120 \mathrm{MPa} . \\
\sigma_{y} & =\sigma_{\min }=\sigma_{\max }-2 \tau_{\max } \\
& =120-(2)(80)
\end{aligned}
$$

$$
\sigma_{y}=-40.0 \mathrm{MPa}
$$

Assume

$$
\begin{aligned}
\sigma_{\min } & =\sigma_{b}=-30 \mathrm{MPa} \\
\sigma_{y} & =\sigma_{\max }=\sigma_{\min }+2 \tau_{\max } \\
& =-30+(2)(80)
\end{aligned}
$$

$$
\sigma_{y}=130.0 \mathrm{MPa}
$$

